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PLANETARY WAVES ON A HEMISPHERE BOUNDED BY
MERIDIANS OF LONGITUDE

By M. S. LONGUET-HIGGINS, F.R.S.
National Institute of Oceanography, Wormley, Surrey

(Recetved 4 October 1965)
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This paper studies the free modes of oscillation in a rotating hemispherical basin bounded by
a great-circle passing through the pole of rotation. The radius R of the globe, the rate of rotation
Q, the depth of fluid % and the acceleration of gravity g are assumed to be such that £ € R and
RQ/|J(gh) <€ 1. The waves can then be treated as non-divergent. The problem is solved by two
independent methods, and the results are compared with each other and with the #-plane approxi-
mation. It is found that the eight lowest modes of oscillation correspond quite well to simple modes
in the f-plane, the approximate periods being within 20 %,. Higher modes show no clear corre-
spondence.

It is suggested that the peak at 0-5 c/d in the spectrum of sea level at Honolulu may correspond
to the lowest mode of oscillation in the Pacific Ocean.
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1. InTRODUCTION

The question whether oscillations of fluid can exist in a rotating shell of fluid, with

Y B \

> boundaries consisting of meridians of longitude, is of interest in connexion with the possible
§ > long-period oscillations of currents in ocean basins. Most of the classical researches on the
8 : fluid oscillations in closed basins (see, for example, Goldsbr.ough 1913, 1914, 1929, 1933;
0 5 Proudman 1920; Proudman & Doodson 1936) have been c!lrecte'd. to a shghtly dlﬁ'e{*ent
T O problem, the problem of the forced response of the system to tide-raising forces, with periods
=w of order 12h. Here we shall be concerned with oscillations having longer periods, of the

order of several days. Such oscillations might be set up by the horizontal stresses exerted on
the ocean by variable winds.

It is well known from the work of Hough (1898) and others that the solutlons of Laplace’s
tidal equations for a rotating spherical ocean are of two kinds: the short gravity waves,
modified to a certain extent by the rotation, and the longer-period ‘planetary waves’,
which are essentially currents rendered time-periodic by the rotation. It can be shown
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318 M. S. LONGUET-HIGGINS

(see Longuet-Higgins 1965) that when the parameter RCQ/,/( gh) is sufficiently small (where
R is the Earth’s radius, £ the angular rotation, g the acceleration due to gravity, and % the
depth of water) then the planetary waves—though not the gravity waves—become non-
divergent. Thus the motions become similar to the oscillations of fluid contained between
two rigid spherical surfaces.

The nature of such oscillations in closed basins was recently investigated by an approxi-
mate method known as the f-plane approximation (Rattray 1964; Longuet-Higgins 1964 4,
1965 ; see also Hoiland 1950) in which the spherical surface is replaced locally by a plane,
but the variation f of the Coriolis parameter with latitude is assumed constant. It was shown
that the possible modes of oscillation may be described, in that approximation, as a carrier
wave, moving always towards the west, modulated by an envelope fixed in space. On
this basis the period and general character of the oscillation can be determined quite
simply.

The purpose of the present paper is to describe an exact computation of the non-divergent
oscillations in a particular type of ocean basin, and to see how far the exact results are in
agreement with the f-plane approximation. If the agreement is satisfactory it may then be
possible to use the f-plane approximation with confidence in situations where the exact
solution would be difficult to obtain. Some preliminary results of this work were mentioned
in an earlier paper (Longuet-Higgins 1964a).

The problem to be considered is as follows. Imagine a hemispherical shell of fluid whose
boundary is a great-circle passing through the pole of rotation, so that the centre of the shell
lies on the equator. The depth of water (i.e. the thickness of the shell) is assumed constant,
and is small compared to the radius of the sphere. We seek the free modes of oscillation in
such a fluid shell. The amplitude of the oscillations is assumed small enough that the equa-
tions may be linearized. The vertical density stratification, though slight, is assumed
sufficient to inhibit the vertical component of the Coriolis force.

The problem will be solved by two independent methods. In the first method the pole of
coordinates is taken on the axis of rotation, and the solution is expanded in a series of
spherical harmonics, as in Goldsbrough (1933). Our situation, however, is simpler than that
of Goldsbrough’s in that the divergence of the motion is neglected. We thus work in terms
of a single function ¥, the streamfunction. ¢ is expanded in a double series whose terms are
products of Legendre polynomials in the colatitude ¢ and of Fourier harmonics in the
longitude @. These are selected so as to satisfy the conditions at the boundary. Substitution
of this series in the equations of motion gives an infinite set of equations for the coeflicients
in the series. The solution proceeds by successive approximation, truncating the infinite
matrix at successively higher numbers of rows and columns.

In the second method (described in the Appendix) the pole of coordinates is taken not on
the axis of rotation but at the central point of the basin, that is to say on the equator. The
transformed equation of motion is more complicated, but when the streamfunction is
expanded as before the equations for the coefficients are somewhat simpler.

The two methods are found to give results in very close agreement. These results are then
compared with the f-plane approximation (see § 8) and the lower modes at least are found
to be quite well approximated by the f-plane approximation. Finally, in §9, the possible
application of these results to the Pacific Ocean is discussed.
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PLANETARY WAVES ON A HEMISPHERE 319

2. FORMULATION OF THE PROBLEM
Take spherical coordinates 8, ¢ with pole on the axis of rotation; let # denote the colatitude
[0 = 0 at the north pole] and ¢ the longitude. The boundary of the basin may be taken as
given by ¢ = 0 or ¢ = 7.
The basin being of uniform depth the equation to be satisfied by the streamfunction ¢ is

2 (V)20 ag (1)

where V2 denotes the surface Laplacian?

19 N1 o
2 I e
Vi=Gow (S‘ b aﬁ) t5in % 2%

and (2 denotes the angular rotation of the globe [cf. § 2 of (I)]. The differential equation (1)
is to be solved subject to the boundary condition

=0 when ¢=0,m. (2)

Il

We seek in the first place solutions of (1) which are simple-harmonic in the time #, with
period 27/o.

3. FIRST METHOD OF SOLUTION
Let us assume for ¢ the series

v = % i Ar P7(cos f) sinmg e~i7¢, (3)
where the A7 are constants, complex in general, and P?(x) denotes the associated Legendre
polynomial: 1 2)m gntm

ppp) = S S e

In (8) it is understood that the real part of the rlght-hand side is to be taken. Since sin m¢
vanishes when ¢ = 0 or 7, each term of (3) satisfies the required boundary condition, and
so, if the series is uniformly convergent, does its sum. Now let us substitute in (1) and
assume term-by-term differentiability. Since Py*(cos ) sinm¢ is a surface harmonic S, (6, ¢)

of degree n satisfying V2, +n(nt1) S, = 0,
we have ir % i n(n+1) A7 Pm(cos0) sinmg+- 20 Z Z rd; Pr(cos 0) cosrg =0, (4)
n=1 m=1 s=1r=1

to be satisfied when 0 < f < 7 and 0 < ¢ < 7. Now in the interval 0 < ¢ < 7, the function
cosr¢ can be expanded in the sine series:

cosrg = % 3;:1 mﬂrzjz(m, N sinmg (0< ¢ <m), (5)

1 m-r) odd
(m+r) } (6)

where n(myr)
10 (m+7r) even.
1 The radius of the globe is taken as unity.

39-2
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320 M. S. LONGUET-HIGGINS

Similarly, let us suppose that, for any given value of m, P7(x) can be expanded in the form

P = S (5 ) Prw 7

n

(cf. MacRobert 1926). Then on multiplying each side by P/*(4) and integrating term-by-
term we have

fl_lpgplmdﬂzyc 7}2) (ﬁtZ):zi% (8)
1 0 (I n)

since PRPrdp=1(l4+m)! 1 (9)
I &km%1+; (“”J

(see, for example, Whittaker & Watson 1927, §15-51). Writing n for / in (8) we have

700 =i+ DI ),

s n (n+m)! n

where / (Z 7:;) denotes the symmetric expression
r om Y pma., (M T
1(5 n) - j_lPsPn d/twl(n S). (10)
Substituting the expansions (5) and (7) into the second summation of (4) we have

0SS n(n+1) Am Pr(cos0) sinm

n=1 m=1

n] m:—r

3 ﬁ”:%lf (n+%)1(§ m) MIMT) pn(cos 0) sinmg — 0. (1)

If we define P7*(4) = 0 when m > n, then we have also / (; Zl) = 0 when m > n. Hence in

the second summation above we have symbolically

35-335
Then equating coefficients of P*(cos ) sinmg in (11) we have
. 8Q (n—m)! e S omryp(m,r) (1 m) .
ZO’?’Z(?’Z—I— 1) A +7 GL‘_*I:;L)'( n+s ) g} rgl mz——rf I(.S‘ n As = 0; (12)
where 1 < m < n < o0. For convenience let us write
7o [8Q = A (13)
(n+m)!n( n+1] m -
and I:(n m)! il Am = Br, (14)
Then the above equation becomes
B+ > SQ(y 1) B=o, (15)
s=1r=1
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PLANETARY WAVES ON A HEMISPHERE 321
where now
m 1\ [(—m)! n+} (s=r)! s+3 T mr (m r)
Q(n s)  L+m)! n(n+1) (s+7)!s(s+1) m2_7277(m,r)1 n s’ (16)

Since g(m,r) and (7;‘ Z) are both symmetric in the pairs (7:), (Z), it is evident that

m r\. . C(m\ (T . . (m) .. L (T . .
Q (n s) 1S antisymmetric in (n)’ (s)’ e. if (n) is interchanged with (s) the sign of @ is
reversed. It is convenient to regard the summation with respect to 7, s in (15) as a simple

summation over all allowable values of 7, s. (These can of course be placed in a single
ordered sequence.) Hence we can write

By = 3iQ(7 ) B a7)
G "0
so that Ais an eigenvalue of the Hermitian matrix iQ) and is therefore real. Each eigenvalue

A and the corresponding eigenvector B? corresponds to a free mode of oscillation; the period
of the oscillation in days is given by

Q 7 03927
FTET A (18)

and the corresponding constants in the series (3) are given by

A= (n-l-Z)!n(n—i—l) By (19)

4. NATURE OF THE SOLUTIONS

A closer inspection of the matrix ¢ will show more clearly the character of the solutions.
In equation (10), P7is an odd or even function of  according as (n—m) is odd or even; and

similarly for P7. Hence we see that / (7:; Z) vanishes unless (n—m) and (s—r) are both even
or both odd. On the other hand 7(m, r), by (6), vanishes unless m and r are of different parity.
Since [ (7:; Z) and #(m, ) are both factors of Q (7;; 2) we have the following possibilities

for non-zero Q:

(m r) _ (odd even) (even odd
n s/ \odd even even odd) > (20)
(m r) _ (odd even) . (even odd)
n 5] \even odd) ° odd even/’ (21)
In (17), if (7;;) . (ggg), then the summation can be taken over (Z) = (z\tgz)’ and vice
versa. So we have m oy
ABr= 3 i@ (n S) B, (22)
(oad)  ()=(&ven)

and similarly 1B = S )iQ (’ ”’,)B;;z’. (23)

() ()= ¥ "
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322 M. S. LONGUET-HIGGINS
Hence substituting for B7 in (20) we have
vBy—R(" ") By, (24)
non
m\ . (odd
where ( n) is (o d d) and
m m m r r om
R(n n) :_(r),%wen) Q(n S) ? (s n) (25)

. . . . (m o7
But @ is antisymmetric in (n S) and so

Ry )= (§)=%§Z§2)Q(? Dol ) =

a real symmetric matrix. In practice we can solve the eigenvalue equation (22) for 4> and
B™ and then find B7 from (21).
Since @ is real, equations (20) and (21) show that if B is real, then B is imaginary, and
similarly for 4™ and A47. So the solution (3) can then be written
¥ = ¢, cos ot + ¢y sin ot,

where U= > ArPr(cosl)sinmg,

() -(5ad)

Vo= 3 (—i)ArPl(cost)sinsg,
(5)-(&e)

and ¢, ¢, represent the in-phase and quadrature components of the motion. We may also

define an ‘amplitude’ o= (Y392t
and phase x = tan~ (y,/¢,)
in terms of which Y = acos (ct—y).

Since in the case just treated (n—m) and (s—r) are both even, it follows that ¢ is an even
function of cosf and so symmetric about the equator. We call such solutions ‘symmetric
odd )

and

modes’. If, however, starting from (21) instead of (20) we assume (?:Z) = (even

S odd
modes in which ¢ is an odd function of cos§, and so the equator is always a streamline.

even . .. . .
(r) = ( v ) we obtain, by exactly similar steps, the ‘antisymmetric modes’. These are

5. METHOD OF COMPUTATION

The analytical properties of the integral / (7: 2) defined by equation (10) seem to have
been elucidated only in certain special cases, as when r = m (see equation (9)). It can be
shown (see Longuet-Higgins & Crease, MS. in preparation) that / (ZL Z) generally satisfies

certain three-term recurrence relations and that it is in fact the sum of a /7, that is, a
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PLANETARY WAVES ON A HEMISPHERE 323

generalized hypergeometric series.T The series can be transformed in various ways so as
always to have only a finite number of terms.

. m r . .
For the purpose of computation, however, I (n s) was evaluated in two independent

ways: first directly by quadratures; and secondly by substituting in (10) the series

PC O [P o S
Pr(h) = g (1= 2)} [(nﬂ—m)!*Q(zn—l) (n/im——Q)!
1 n—m—4
+2.4.(2n—1) (2n—3) (n/im—él)!—"']'

On multiplying by the corresponding expression for P;(x) and integrating term-by-term,

using 1 plg—1)!
1—p@2)pp2ady = £ 1200
J =

we easily obtain / (7:: Z) in the form of a finite double series:

mor\ e BImlBGIIl  (p—i— 1) (s—j—1)!

I(n s) o ,-ZO =0 (—3) ]i!j! (n—m—2¢)! (s—r—2j)!

A= —r—1) — )} ((m )}
A0t DG} |

The two methods gave results in agreement up to at least five significant figures (for
m < n< 10,7 <s < 10). The double summation method was then checked against the sum
of the generalized hypergeometric series and was found to be in agreement to at least eight
significant figures. The double series method was that eventually used.

The calculation of the eigenfunctions from equations (17) and (24) was carried out by

. . m . .
truncating the matrix (n s) at successively higher numbers of rows and columns. Thus

it was supposed that (for the symmetric modes)
m<n<2%k—1, r<s<2k,

where £ was taken successively to be 1, 2, 3 ... 8; and for the antisymmetric modes
m<n<2k r<s<<2k+1,

with the same sequence of values for £. Each series for ¢, and ¢, then contained }£(k-+1)
terms; hence the matrices @ and R contained also $4(k+1) rows and columns. The eigen-
values and eigenvectors of R were extracted by a standard routine}, capable of handling
matrices of high order. These and the subsequent computations were carried out on an
I.B.M. 7090 digital computer.

The results of these computations are set out in the next two sections. It should be men-
tioned that the numerical results were checked by a completely independent method, which
is described in the appendix. All the results quoted were verified to at least six significant
figures.

t See also Ashour (1964).

1 Subroutine NU-MLEW; SHARE Program no. 1588. This subroutine uses Householder’s (1958)
method to reduce the matrix to tridiagonal form; Givens’s (1954) method of finding the eigenvalues, and
Wilkinson’s (1958) method of calculating the corresponding eigenvectors.
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324 M. S. LONGUET-HIGGINS

6. THE EIGENVALUES

When £ = 1 (the lowest approximation) both methods of approximation yield the single
eigenvalue o J15
0~ 8 — 0-484123
for the symmetric mode and g% = Po/% = 0194878

10 I I I n I T T 177117 30

N :/_.__ ........... : - 1.
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— ~:
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002 |— T — . * — 002
—_— \‘\,
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0-01 {— ' — — —— — 001
- o~ » -
s o prowe ‘/. ey
0-003 l I N I | I B B :
1 2 3 4 5678 1 2 3 4 5678 0-005
k
(a) Symmetric modes (b) Antisymmetric modes

Ficure 1. Convergence diagram for the eigenvalues. o/Q denotes the frequency;
k denotes the degree of the approximation.

for the antisymmetric mode. At the kth approximation, involving the resolution of a matrix
of 3k(k-1) rows and columns, one obtains 3£(k+1) eigenvalues. These were calculated
up to k£ = 8 and are shown graphically in figure 1.
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PLANETARY WAVES ON A HEMISPHERE 325

Figure 1 illustrates roughly the rate of convergence. Corresponding eigenvalues have been
connected by a broken line, the succession being determined by examination of the corre-
sponding eigenvectors.

For example, the mode corresponding to the largest eigenvalue is dominated by the term
in P%(cosf) (in the in-phase component ¥,). The quadrature component ¥, contains
(eventually) large coeflicients of both P} and P}. However, P§ can occur first only in the
second approximation (k = 2). Thus we see why the eigenfrequency for £ =: 1 lies not very
close to the eigenfrequencies of the corresponding mode when £ > 2.

Similar considerations apply to the other modes: no eigenfrequency can be well estab-
lished until the corresponding approximation includes all the main spherical harmonics in
that mode.

In general, convergence is most rapid for the largest eigenvalues. When £ = 8 those
eigenvalues less than about 0-01 are not yet well established.

TABLE 1. SUCCESSIVE APPROXIMATIONS TO THE FREQUENCY ¢/{) OF THE THREE
LOWEST SYMMETRIC MODES (A DENOTES THE FIRST DIFFERENCE)

mode 1 mode 2 mode 3
k o/Q A o/Q A o/Q A
1 0-484123 — —
2 0-610577 354 0-285391 _ — -
3 0:614.081 396 0-379587 28922 0:209117 _
4 0-614977 336 0:382409 784 0-275633 2101
5 0:615313 155 0:383293 377 0-277734 745
6 0:615468 082 0:383670 190 0:278479 345
7 0:615550 046 0:383 860 106 0-278824 184
8 0-615596 0:383966 0-:279008

The rate of convergence of successive approximations is illustrated numerically in
table 1, from which it can be seen that the convergence is indeed rapid; the difference
between successive approximations decreases nearly exponentially as £ increases. From this
property one can estimate the order of the error in the calculated frequency. However, the
procedure is clearly valid only for those modes whose frequencies are already well
established.

The frequencies of all such modes, as given by the approximation £ = 8, are listed in the
first column of table 2, the estimated error being possibly one unit in the last decimal place.

TABLE 2A. FREQUENCIES AND PERIODS OF THE WELL-ESTABLISHED SYMMETRIC MODES

frequency period largest n(n+1)
in c/day in days coefficient 2m
(1) 0-6156 1-624 bit 15
0-384 2-60 B 2-5
0-279 3-58 B 35
0-219 4-56 B 45
0-181 55 B} 55
(2) 0-192 5-22 B 5-0
0-170 5-88 B 56
0-148 6-75 Bj 6-43..
0-137 7-3 B3, 7-33..
(3) 0-109 9-1 B3 9:0
0-105 9-5 BZI 9-43..

40 VoL. 260. A.
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TABLE 2B. FREQUENCIES AND PERIODS OF THE WELL-ESTABLISHED
ANTISYMMETRIC MODES

frequency period largest n(n+1)
in c/day in days coeflicients 2m
(1) 0-300 3-333 B, B3 30,333 ...
0-243 411 B, B} 375, 4-2
0-201 4-99 B, B] 467 ..., 514 ...
0-170 5-89 B, BY, 5625, 6-11 ...
| 0-147 680 BIY, Bl 66, 7-08 ...
L <@ 2) 0-140 7-15 B} 70
— 0-131 7-66 B 7-5
= 0-119 84 BY, 8:25
S 0-108 9-3 BY 9-1
> 13
® E (3) 0-090 11-1 B, 11-0
A= 0-087 115 B, 11-375
= O
L O
= 7. THE EIGENVECTORS

Table 3 shows the distribution of the normalized coefficients B? for a typical mode: the
symmetric mode with frequency ¢/Q = 0-192. It can be seen that the largest (in absolute
value) of the coefficients is B3, with a magnitude of 0-8749. The two neighbouring coeffi-
cients B% and B are almost as large, but the others decrease rapidly with separation from
the main harmonic. (When 7 > 10 the coefficients are not expected to be very accurate.)
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TaABLE 3. NUMERICAL VALUES OF THE COEFFICENTS B IN 1, AND —iB™ IN ¥,
FOR THE SYMMETRIC MODE WITH FREQUENCY ¢/{) = 0-192

—
—

\\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m

1 —00124 — 0-2463 —0-0288 — —0-0077 — —0-0019 — —0-0007 — —0-0003 — —0-0002
2 0-0015 — 7T — 0-0376 — 0-0208 — —0-00046 — —0-0006 — —0-0006 — —0-0003
3 —  —0-0030 —0-87499 — —0-0018 — —0-0078 — —0-0041 — —0-0022 — —0-0012
4 —_ 174 00342 — 0-0100 — 0-0032 — 0-0011 —

5 — 0-:0062 — 0-3746 — 00164 — —0-0006 — —0-0022 — —0-0018

6 —_ 0-0306 — — 0-0177 — 0-0094 — 0-:0046 —

7 — .

8 —_ —0-0 — 0-0069 — 0-:0063 —

9 — — 0-0349 — 0-0146 — 0-0055
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= O This example was found to be typical of the well-established modes: in each mode there
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was generally one coefficient B which was clearly the greatest. However, in some of the
antisymmetric modes (table 2B) the two largest coefficients were found to be of nearly
equal magnitude. In such cases both are listed.

One would naturally expect the period of each mode to be approximately equal to the
period of the free mode (on the unbounded sphere) corresponding to the dominant
harmonics. That is to say we expect
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where B is a dominant harmonic. The values of this expression are tabulated in the fourth
column of table 2, and it will be seen that there is indeed rough agreement with the more
accurate values shown in column 2.

2 ¥

JE ) tan= ()

Ficure 2. The streamfunction for the lowest symmetric mode (7" = 1-624). ¢, denotes the in-phase
component, ¥, the quadrature component. Below are the corresponding amplitude and phase
functions.

8. THE STREAMFUNCTIONS

The streamfunctions y are shown in figures 2 to 11. From these it can be seen that the
symmetric modes, for example, fall into three groups, according as ¢, and ¢, have 1, 3 or
5 rows of circulating cells from pole to pole (see figures 2 to 6). The order of the modes
within each group corresponds roughly to the number of cells along a circle of latitude. The
antisymmetric modes, shown in table 2 B, fall into three similar groups, having respectively

40-2
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2, 4 and 6 rows of cells from pole to pole (see figures 7 to 11). Whether all the modes of still
higher order can be grouped in a similar way remains to be determined.

Consider the streamlines for the lowest symmetric oscillation, shown in figure 2. At time
t = 0, say, the streamlines are given by the in-phase component ;. It can be seen that the

; ‘r\,\\
N +3) tan~" (Y, /1)

Ficure 3. The streamfunction for the next lowest symmetric mode (7" = 2:60),
with the amplitude and phase functions.

currents consist of a single circulating cell placed centrally in the basin, but with very weak
cells flanking it to either side. The central cell then migrates westwards, and the cell at the
eastern edge of the basin becomes stronger and moves westwards. At ¢ = }7T (where 7 is
the period) the streamfunction is equal to ¥,. From figure 2 we see that the two cells are now
of equal dimensions. At ¢ = } 7 the first cell has moved to the westwards edge of basin and
the second cell has moved to the centre. The streamlines are again as for ¢ = 0 but with the
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direction of the circulation reversed. Similarly, at ¢ = T the streamlines are as for ¢ = 1T,
but with the direction of the circulation reversed.

Thus the lowest mode consists of a succession of cells, of alternate sign, arising at the
eastern boundary of the basin, drifting westwards and vanishing at the western edge.

N +93) tan™! (Y,/yry)

Ficure 4. The streamfunction for the third symmetric mode (7" = 3-58),
with the amplitude and phase functions.

The higher modes will be found to behave in a similar way.

Let us see how far these modes can be described by the ‘f-plane approximation’. In this
approximation the spherical basin is replaced locally by a plane surface tangent at the
centre of the basin, that is to say at a point on the equator. The rate of change f of the
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Coriolis parameter with latitude is assumed to be constant and everywhere equal to its
value at the centre of the basin, that is to say

f= 202,
the radius of the sphere being taken as unity. The boundary of the basin is a circle of
radius a.

o

V93 tan™ (¥5/9,)

Ficure 7. The streamfunction for the lowest antisymmetric mode (7" = 3-333), with
the corresponding amplitude and phase functions.

Now the normal-mode solutions for a circular basin on a f-plane have been described
in I (§§1+9 and 1-10). If x denotes the eastward coordinate, 7 denotes the radial distance
from the centre, then the normal mode solutions are given by a stream function of the form

¥ = () (ntan=Y) exp [—ilpt-ot)], (25)
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where J,(z) is the Bessel function of integral order n, and y = /o, the period in days. In
order that the boundary shall be a streamline we must have

(26)

@i +93) tan™ (5/91)

Ficure 8. The streamfunction for the next lowest antisymmetric mode (7" = 4-11),
with the amplitude and phase functions.

where z, ,, is the mth zero of J,(z). If we assume that the circle is of radius 7, then
y =2z, .[m. (27)

The values of z, , not exceeding 15 are shown for convenience in table 4.

Equation (25) shows that ¢ can be considered as a carrier wave exp [—i(yx+0?)]
travelling from east to west (with wavelength 27/y and crests running due north—south)
modulated by an envelope function J,(yr)s{ntan1(y/x)}. The envelope function is

41-2
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identical with that describing the free oscillations of a circular membrane of radius q,
clamped at the boundary. Thus the streamlines ¢ = 0 at any fixed instant are of two kinds:
the nodal lines of the carrier wave, running in a north—south direction, and the nodal lines
of the envelope, which are m concentric circles and 7z straight lines through the origin.

~

JWE+ ) tan™ (/)

Ficure 9. The streamfunction for the third antisymmetric mode (7" = 4-99), with the
amplitude and phase functions.

We may write (25) in the form

¥ =1 +iys) e,
in which ¢, and ¢, represent the in-phase and quadrature components of the flow. Then
it is clear that in this f-plane approximation

(W3+93)F = J, (72 fntan (y/x)}
and tan (Y /) = 7.
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In order to compare the lowest mode on the hemisphere with the corresponding f-plane
solution, figure 2 shows the ‘amplitude function”’ (y3+y32)¥, where ¢, and ¢, are the stream-
functions in figure 2. It can be seen that the amplitude function has nearly circular symmetry
and no nodal lines other than the boundary, just as the Bessel function

Ju(yr) cos {ntan}(Yy/¢1)}

with #n = 0 and m = 1. Moreover, the period of the lowest mode on the sphere is 1-62c/d
compared with the frequency of the lowest f-plane mode which is 1:53 c/d—a difference of
about 69, (see table 5).

TasLE 4. THE mTH ROOT 2, ,, OF J,(2z) = 0

7 0 1 2 3 4 5 6 7 8 9 10
m\

1 2-40 3-83 514 6-38 7-59 877 10-0 11-2 12-3 135 14-6
2 5-52 7-02 842 976 11-1 12:3 137 14-9 —_ —_— —
3 8:65 10-2 11-6 13-0 144 — — _— — — —_
4 118 133 148  — - - = = ==
5 149 - = = - ===

It will be noticed that in figure 2 the amplitude function is somewhat flattened towards
the equator. This can be ascribed to the geometrical trapping effect discussed in I.

The ‘phase function’ tan~!(y,/¢,) for the lowest mode is shown in figure 2. As we might
expect, the phase advances at a nearly uniform rate from east to west.

Thus the lowest symmetric mode corresponds quite well with the lowest mode in a
circular basin on the f-plane.

The computed functions ¥, ¥, (Y3-+¥3)* and tan~1(y,/y,) for the lowest antisymmetric
mode are shown in figure 7. The chief difference between these and the corresponding
functions in figure 2 is the existence of a streamline ¢, = 0 and ¢, = 0 along the equator.
The amplitude function (y?+y3)* therefore has a nodal line along the equator also, and
the phase function tan~(,/¢,) has a discontinuity of 180° at the equator. The mode may
be compared with the lowest antisymmetric mode on the f-plane, in which

Wi+y3) =Ji(yr)sing (= tan~! /i)

The period of the spherical mode is 3-33d compared with 2-44d for the f-plane mode.
This is not so close as for the symmetric mode, perhaps because in the latter the energy is
located on the whole closer to the equator.

The computed functions for the next lowest symmetric mode on the sphere are shown in
figure 3. It will be seen that ¢, has three main cells and ¢, four cells. The amplitude function
(¥3+y3)¥ is also shown in figure 3. This now has a ridge of low values lying along the central
meridian. This mode can therefore be compared to the f-plane mode in which

W3+¥3) = Jy(yr) cosy,

which has a nodal diameter along ¢ = 3. The period of this mode is 2:60 days, close to the
period (244 d) of the corresponding f#-plane mode.
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In this mode a new feature appears (figure 3). Where a streamline ¢, = 0 meets a stream-
line ¢, = 0 (at a simple point of intersection) there must be an amphidromic point, at which
the phase progresses in a circle. A physical explanation of this may be given as follows. In
the f-plane approximation the phases tend to progress westwards with a constant phase-
velocity 202/f. But on the sphere £ is not a constant but is greater at points near the equator
than near the poles. Consequently at low latitudes the phase tends to travel more slowly
than in high latitudes. The existence of amphidromic points enables the phase at low
latitudes to ‘catch up’ the phase at higher latitudes as the waves progress westwards.

From figures 4, 8 and 9, it can be seen that some of the other modes of oscillation also
have amplitude functions resembling those of membrane oscillations. In table 5 the periods
are compared with those of the corresponding f-plane approximations. The agreement
between columns 1 and 4 is fairly close, especially for the symmetric modes.

TABLE 5. COMPARISON OF THE LOWEST MODES OF OSCILLATION IN A HEMISPHERICAL
BASIN WITH THE CORRESPONDING MODES ON A ﬁ-PLANE

nodal
Qfo lines (n, m) 2z, T
symmetric modes 1-62 O (0, 1) 1-53
2-60 @ (1, 1) 2-44
3-58 (0, 2) 3-51
4-56 (1, 2) 447
antisymmetric modes 3-33 @ (1, 1) 2-44
411 @ @, 1) 327
4-99 (1, 2) 4-47
NS
5-89 (2, 2) 5-36

Higher modes do not resemble the f-plane approximation so well. No doubt this is partly
because the controlling influence of the circular boundaries is less, and because the trapping
effect, not present in the f-plane, is more noticeable in the higher modes.

9. APPLICATION TO THE PAciric OceaN

Before the present model can be applied to the real oceans, the effect of the finite depth /
must be considered. As shown in II this introduces other terms into the differential equa-
tions of the motion, and gives rise, apart from the planetary waves, to gravity waves also.
Nevertheless, the planetary waves can be approximated by an equation which reduces to
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the spheroidal wave equation for sufficiently large wavenumber 7. The terms neglected are
of order 1/n2. For the Pacific Ocean n is of order 2 or 3 at least, so that in using this approxi-
mation we must expect errors of the order of 0-25 to 0-1 at most.

By use of the spheroidal wave equation it was shown that the effect of finite depth is in
general to intensify the trapping of the waves towards the equator. From examining a
particular example (II) it appeared that the trapping is not much more severe than the
geometrical trapping due to the spherical curvature, which is already present when
RQ)/./(gh) 0. However, for the higher modes (longer periods) the trapping effect gives
rise to a critical latitude beyond which waves of a given period cannot penetrate far.

The spheroidal wave equation can in general be approximated by the f-plane approxi-
mation locally, that is to say within a distance of the order of one wavelength from the
central latitude. The error in the approximation is of order 1/ if the central latitude is not
on the equator, and of order 1/#?if it is. Thus if we are considering the symmetric oscillations
the error is of order no greater than that already neglected.

104 _
—~ 102k -
5 —\\, | | _
B : N ‘

2 1 Y S S——
Q o .
10% -
0 : 05 10 15 20 25

c/day

Ficure 12. Spectrum of sea level at Honolulu, July 1938 to December 1957.
(After Munk & Cartwright 1966.)

Hence, when considering an ocean basin of the dimensions of the Pacific Ocean, which is
centred nearly on the equator and has a radius less than 7, it may be permissible to treat
the lower modes of oscillation by a f-plane approximation for finite depth.

Now the f-plane approximation for finite depth /% involves the parameter f2/gh, where
fis the local Coriolis parameter; and on the equator f vanishes, as though % were infinite.
Hence, we may perhaps be able to apply the f-plane approximation to the lower modes of
oscillation, assuming the depth infinite, as in the present paper.

In figure 12 is shown the spectrum of sea level at Honolulu, calculated by Munk &
Cartwright (1966). The most obvious features of the spectrum are the peaks at the tidal
frequencies of 1c/d (diurnal tide) and 2c¢/d (semi-diurnal tide). Apart from the gradual
increase in spectral density towards low frequencies, which is characteristic of most geo-
physical time-series, the next most prominent feature is the peak at about 0-5 c/d. This peak
is certainly significant, being a much greater departure from the flat background than could
be accounted for by random variations. There is no good reason to suppose it is a sub-
harmonic of the tidal frequency, since subharmonics are not found in other tidal records.

42-2
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Let us consider whether it might correspond to a mode of oscillation of the Pacific Ocean
basin.

If we assume the Pacific Ocean basin to be roughly circular with a radius of 1rad (less
than m) then according to the f-plane approximation (26) the frequencies of oscillation
(c/d) are given =10z,

From table 4 the lowest mode has a frequency

0/Q=1/z,, = 0-42¢/d,
not far from the peak at 0-5c/d in figure 12.

The next lowest frequency corresponds to the second symmetric mode:

0/Q=1/z,, = 0-26c/d.
However, this having a nodal line down the central meridian would not be likely to be
observed at Honolulu. The higher modes do not necessarily have this feature, but their
frequencies, all less than 0-2¢/d, tend to lie very close together. If their damping is appreci-
able they would tend to be blurred, and so would not show up as sharp lines in the spectrum.
Indeed, the rise in the observed spectral density at low frequencies may possibly be due to
the amalgamation of the higher modes into a continuous background.

10. CONCLUSIONS

We have calculated the normal modes of oscillation in a rotating, hemispherical shell,
and have found that for at least eight of the lowest modes the f-plane approximation is
reasonably accurate. It is suggested that a peak at about 0-5c/d in the observed spectrum
of sea level at Honolulu may correspond to the lowest planetary-wave mode in the Pacific
Ocean.

These conclusions suggest several directions in which future investigations might proceed.
In the first place it should be possible to extend the present method of calculation of the
modes of oscillation in basins of ideal shape so as to gain a more accurate estimate of the
effect of horizontal divergence upon the eigenfrequencies.

Secondly, a more realistic representation of actual basins such as the Pacific Ocean
might be made possible by numerical methods, on replacing the differential equation by
difference equations to be satisfied at the points of a grid. In this way the effects of varying
bottom topography might be included. A valuable check on the accuracy of this method
would be provided by comparison of these numerical solutions in ideal cases with the
solutions obtained analytically by the method described in the present paper.

Lastly, the collection and analysis of records of current velocity and surface elevation
should be undertaken with a view to confirming the existence of this type of oscillation
in ocean basins.

APPENDIX. AN ALTERNATIVE METHOD

The following independent method was used as a valuable check on the eigenfrequencies.
However, the method has some interest in itself. It involves transforming the pole of coordi-
nates to the centre of the basin, lying on the equator; hence it could be adapted to other
circular basins centred on the equator, but of radius different from 4.

1 A short calculation shows that the number of modes contained within a given small frequency interval
increases proportionally to o3 as o - 0.
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If the new coordinates are chosen suitably, the equator will be given by ¢ = 0 (in the
eastward direction) and the boundary of the hemisphere by § = 7. When transformed to
the new coordinates, equation (1) becomes

%(szﬁ) +2Q (sinﬁcosgzﬂ—gi—t-l-cotﬁsingﬁ?%) y=0, (30)

where z = cos . The boundary condition becomes
=0 when 0= }m. (31)

Now let ¥ be expanded in the form

U= Z Z Pr(u) [K,, C™ cos mp+ Drsin mg], (32)
m=0 n=m
where K,, = 1 when m = 0 and K, = }. Since the function is defined only over 0 <z <1
we may assume that, in the summation with respect to n, (n—m) takes only odd integer
values. This incidentally ensures that each term of the series vanishes on the boundary.
Substitution in the differential equation (30) now gives

oS S n(n+1)PrK,, Crcosmp+Drsinmg]

m=0 n=m+1

dPy [K C™ cos ¢ cos mp+ D7 cos ¢ sin mgp|

+203 3 (1w

m=0n mtl

+(1 mﬂ2)%Pm[ —K,, Csin ¢ sinmgp+ D sin ¢ cos mqﬂ]} = 0. (33)
—H

Now from the definition of P7(g) it follows that when m > 0

dpPm mu
— 2\t n . pmtl pm- 34

so that the expression in curly brackets becomes

{Km cm [P,’,"“ cosgcosmp— ’""2) . Py cos (m—1) ¢]
+Dm[Pm+Icos¢smm¢—-( ) P’"sm (m—1) ¢]} (35)
But when m > 1 we have also
2MA_ pm — Pl g (nf-m) (n—m-+1) Pp-L, (36)
(l—ﬂz)‘%

Hence (35) becomes
{3Cm [Pr+1cos (m+1) ¢ — (n+m) (n—m+-1) Pp=tcos (m—1) 4] :
+ 1D [Prtisin (m+1) §— (n+m) (n—m+-1) PP~1sin (m—1) ¢]}. (37)

When m = 0 (35) is clearly 1CO P cos¢. }
42-3
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So equation (33) becomes

ia% % n(n+1) Pr[K,, C"cosmgp+ D sinmg]

m=0 n=m+1

+Q§ % {Cr[Pr*lcos (m+1)¢p— (n+m) (n—m~+1) PP~1cos (m—1) ¢]

m=1 n=m+1
+Dp[Ppttsin (m+1) ¢— (n+m) (n—m+1) Py~'sin (m—1) ]}
+Q'S COPlcos g — 0. (38)
n=1

Clearly the coefficients of cos m¢ involve only the C?, and the coeflicients of sinm¢ involve
only the Dm. The solutions involving the C7 are symmetric about the equator (¢ = 0) and
the solutions involving the D? are antisymmetric about the equator, i.e. for them the
equator is a streamline.

To investigate the symmetric modes, let us equate to zero the coeflicients of cosmg, for
m=0,1,2,.... Then we obtain

0 S nt1)CnPrrQ S [Co = (' fmt 1) (1 —m) O] PR =0 (m=0,1,2,...),
n=m+1 n'=m
(39)

where by convention C;! = 0 and C7"*! = 0. Now in the above summations (n'—m) is
always even so that the P on the right-hand side are of different type to the P7 on the left.
Accordingly we expand P in the form

Pr=Gn',n)Pr (0<u<1), (40)

where the G(n', n) are constant coeflicients and (n—m) is always odd. Then substituting in
equation (39) and equating to zero the coefficients of P we have

ion(n+1) Cm+Q % [Cr-l— (' +m~+1) (n'—m) CH] G(n',n) = 0. (41)

To find the coefficients G(n', n) in (40) let us multiply by PZ%, where (n"—m) is odd (i.e.
n" is of the same parity as n) and integrate over 0 < x < 1. Since the product P P is an
even function of g, the integral over 0 < u <1 is exactly half the integral taken over
—1 < p < 1. By equation (9), all the terms on the right then vanish, except those for which
n" = n, and consequently we have from (9)

Ypmpndy = Gty L —m)!
J‘OPn’Pn”dlu‘“ G(”an Qﬂ"+l (n”—l—m)'
So on replacing n” by n we find
, n—m)! 1
Gn',n) = (2n41) Ener;!fOP;;ngdﬂ. (42)

The integral on the right can be evaluated from the identity

d o [pm AP0 o

dﬁ}]-}—(n’-—n) (n--n'+1) PR PP — 0
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(which follows from the differential equations for P and P2). Integrating over 0 < g < 1
we have
{P,’,'?dé;" _ppdB }—{—(n —n) (ntn' A1) f PrPrdu =0,

and so, since (' —n) = 0,

1 . dP'" dP'”
m pm — 4
foP" P dp (n—n") n+n +1) [ B d,u___l (43)
But since (n—m) is odd, P vanishes at 4 = 0; while from (34) we have
dP;ln — m-+1
( d,u )ﬁ=0 O (Pn ),u=0'
Hence we have simply
j P Prdy = L (PP, B
0 n'tn (n——n’) (n+n'+l) n'tn #=0
Combining (42) and (44) we obtain
@) el g, |
G(n',n) = (n—n') (n+n +1) (n+m);( PPyl o (45)
It is easily shown that when m > 0
0 (n—m )odd,
Pr(0) = (—1)¥=m(n+m): (46)
L {em) HEXCRED) I

Substituting from (45) into (41) we have now

ion(n+1) (n+m)! cm — Z Cr-'—(n' +m+1) (' —m) Cnt!
Q@) (—m)! " T LA, (n—n") (n+n"+1)

(PR Prt) ymes (47)

when m = 0,1,2,.... These simultaneous equations have now to be solved for the eigen-
Values (0/Q) and the constants C™.
The equations may be thrown into more convenient form if we introduce the symbol
{(m,m") defined by
, 1 m—m') =+1
$(m,m’) = {O étherwi)se. }
Then we have

Z ¢(m, M)C’"(P"’“P’"“) o= Cp 1 (PR Pr+Y) e+ O (P2 PR g

m'==—w

= [Cp1—(n'—n) (W' +m+1) CPH1] (PR P 1) 1m0
by (46). So (47) can be written

-—ian(n—i—l) (n_l_m) C(mam,) m’ { Pm’+1 Pm+1
20t} (i—mn mzwzm(n—n’) 1) O BB ey (48)
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wherem =0,1,2,...;m = 0,1,2, ..., and (r—m) is odd. Since (' —m) is even, and {(m,m")
vanishes except when (m—m') = +1, (n'—m’) can be assumed to be odd also. To make the
system of equations completely symmetrical in (m,n), (m’,n’), write

n(n+1) (n+m)IE L
[osp o | =5 )

0 o cafm m\ o
Then (48) becomes 5o b = g ?S (n n’) EY, (50)

where

m o m'\ _T (n+3) (n—m)! (W+3) (0 —m )P L(m,m) i1 P
S(n n') B [n(n—i— 1) (n4+m)!tn'(n' +1) (' +m’) J (n—n') (ntn' £ 1) (preippy 1),4=(0' |
k 51

Now §'is clearly antisymmetric in (n)’ (n’)’ and so the set of equations (50) is Hermitian.
From this point on, the solution of (50) proceeds in a similar way to the solution of (17).

. . m r .
We construct a real symmetric matrix T(n S) whose eigenvalues are the squares of the

eigenvalues of iS; by taking the square root we find ¢/2Q. From the eigenvectors E* we
calculate £7 and so C and C7 by (49).

It will be seen that the equations for the coefficients of the antisymmetric modes are
identical with those for the symmetric modes, except that the first row and the first column
of the matrix are omitted.

One proceeds, as in the previous method, by truncating the infinite matrix § after a finite
number 1k(k-+1) of rows and columns, where £ is a positive integer. Successive values of
k give successive, and mutually independent, approximations to the eigenvalues and
eigenvectors.

The notable result of this calculation was that at each value of £ the resulting eigen-
frequencies were identical, to six decimal places, with those calculated by the first method, T
for the same value of k. This strongly suggests that not only are the infinite matrices algebraic-
ally equivalent, that is, they have the same eigenvalues, but that the truncated matrices are
equivalent also.

A proof of the equivalence of the truncated matrices may be sketched as follows. If we
group together all those spherical harmonics in the original expansion (3) which are of
degree k and denote their sum by U, we may write

=3 U(0.g) e (52

Similarly, if we denote the spherical harmonics in the expansion (32) by V(¢',¢'), where
¢’ and ¢’ denote the new coordinates we have

¥ = 3 G0,9) e (53)

+ Except that when k = 8 (the highest approximation) and o/Q < 0-01, the antisymmetric modes
showed some discrepancies in the fourth decimal place. The limitation in accuracy appeared to arise in
calculating the elements of S, not in the resolution of the matrix.
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Now the expansion of a function, defined over the whole sphere, in terms of all the spherical
harmonics is unique; the same must also be true of the expansion of a function, defined over
only half the sphere and extended by reflexion in the boundary, in terms of the ‘odd’
harmonics only, that is, those harmonics which vanish on the boundary. Further a spherical
harmonic of a given degree £ with pole at one point may always be expressed as a finite sum
of harmonics of the same degree k£ with pole at some other point. It follows that

Uy(0,9) = Vi(0',8"). (54)

Now the derivatives U, /dg, say, have themselves been expressed as infinite series in the
U.. The series were then truncated for the purpose of computation. By the same argument
we see that the truncated series for dU, (0, ) [9¢, expressed in terms of the U, must be identical
with the #runcated series for dV,(0',¢")]d¢ in terms of the U, (or V;). Hence the truncated
systems of equations are equivalent also, that is to say the truncated matrices are equivalent.

Inamindebted to my colleague, Mr J. Crease, for many useful discussions on the algebraic
and computational aspects of this problem. The spectrum of sea level at Honolulu is quoted
from a forthcoming paper by Walter H. Munk and David Cartwright, by kind permission
of the authors.
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